科技进展
您当前的位置 :

近日,中国科学院海洋研究所李晓峰研究员团队在遥感观测数据补全研究中取得突破性成果。其研究成果以“GDCM: Generalized Data Completion Model for Satellite Observations”为题,发表于遥感领域国际期刊 Remote Sensing of Environment(SCI一区,影响因子11.1)。

研究团队提出了一种适用于多源遥感数据的通用补全模型:GDCM(Generalized Data Completion Model)。该模型基于时空卷积与注意力机制融合的深度学习框架,成功解决了卫星轨道覆盖间隙与云层遮挡导致的数据缺测问题,可高精度重建海表温度、风速、水汽、云液态水、降水率等关键海气变量,显著提升了遥感观测数据的完整性与实用性。

图1 GDCM模型结构图

GDCM模型以连续7天的观测序列为输入,通过双尺度编码–解码结构捕捉局地与大尺度特征,利用注意力机制筛选关键时空依赖。实验表明,GDCM在复杂海洋环境下仍保持高稳定性,补全精度显著优于传统插值方法与现有AI模型,并在多类型、跨平台遥感数据补全任务中均表现出优异性能,具备良好的通用性和鲁棒性。

此外,GDCM采用逐步加深缺测比例的训练策略,使模型先理解完整场,再逐步适应严重缺测情境,有效提升了泛化能力。以热带不稳定波区域为例,GDCM几乎消除了预测偏差,重建效果稳定可靠。


图2 GDCM模型补全热带不稳定波区域结果图

本成果不仅在技术层面上推动了遥感观测数据智能重建方法的发展,也为未来气候变化监测、台风路径预报、极端事件识别等高时空分辨率应用场景提供了有力工具。

该论文第一作者为中国科学院海洋研究所王浩宇博士,李晓峰研究员为通讯作者,合作者还包括博士生周寅飞。研究工作得到国家自然科学基金和崂山实验室“十四五”重大项目支持。

附件: