科技进展
您当前的位置 :

  近日,中国科学院大连化学物理研究所光电材料动力学研究组研究员吴凯丰团队在量子点光化学应用领域研究中取得新进展,揭示了一种量子点自旋驰豫诱导分子三线态生成的新机制,并探索了该机制的重要应用。

  传统意义上,自旋相关的量子现象研究是物理学的范畴,但近年来化学家合成的各类材料也在相关领域开始备受关注,其中就包括半导体胶体纳米晶(或称量子点)和金属卤化物钙钛矿等。这些材料合成工艺简单、物理化学性质易调谐,有望为自旋电子学和量子信息科技的发展注入新生力量。然而,近期研究工作都表明,目前这些材料的自旋驰豫寿命较短(一般为皮秒量级),其应用仍面临诸多挑战。

  面对上述挑战,吴凯丰团队另辟蹊径,提出这种快速的自旋驰豫可应用于分子光化学领域。在光化学领域中,分子自旋驰豫(称为系间窜跃)产生的三线态具有诸多应用前景。团队前期基于光激发量子点,传能至分子三线态,并应用于高效率的光子上转换。本工作中,不同于先前激发量子点的常规途径,团队创新性地通过激发有机分子注入载流子到量子点,利用量子点快速翻转载流子自旋,进而在后续的电荷复合过程高效生成分子三线态。

大连化物所揭示量子点自旋驰豫诱导分子三线态生成新机制

  团队构建了CsPbBr3量子点—罗丹明B(RhB)分子杂化体系。该体系的能级排布类似于type- 异质结,RhB分子的LUMO和HOMO能级的能量分别低于量子点的导带和价带边能级。因此,激发量子点或分子都可以触发有效的电荷分离。在激发RhB分子时,基于跨时域的瞬态吸收光谱,团队观测到分子向量子点价带注入空穴生成电荷分离态,随后电荷分离态复合生成RhB三线态,以及RhB三线态回到基态的全部动力学过程。研究发现,该三线态生成的关键在于,CsPbBr3量子点的价带空穴在皮秒时间尺度发生自旋翻转,而量子点—分子电荷分离态的复合在纳秒时间尺度,因此自旋驰豫的三线态复合路径占据主导地位。换言之,可利用量子点快速翻转自旋,使本身无法发生有效系间窜越的RhB这类分子高效生成自旋三线态。这与传统的重元素诱发系间窜越截然不同,因为后者不牵涉这些电荷分离和复合过程。

  团队表示,该机制原则上适用于满足电荷分离态能量高于分子三线态能量、电荷复合速率慢于量子点自旋翻转速率的两个条件的任何体系,有望在分子三线态相关的光化学领域取得广泛的应用。此外,在应用层面,考虑到激发 CsPbBr3量子点和激发RhB分子的路径都可在杂化体系中高效生成RhB分子三线态,且两者的吸收光谱刚好互补,团队展示了宽带近白光驱动的高效光子上转换及单线态氧生成。

  该工作以“Spin-enabled Photochemistry Using Nanocrystal-molecule Hybrids ”为题,于近日发表在《化学》(Chem)上。该工作的第一作者是大连化物所博士研究生刘萌。上述工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。

  文章链接:https://doi.org/10.1016/j.chempr.2022.03.003