科技进展
您当前的位置 :

  近日,中国科学院大连化学物理研究所生物能源化学品研究组研究员王峰团队与大连理工大学特聘研究员王敏团队合作,发展了一种载体氧缺陷介导的生物质直接甲烷化新方法,实现了包括木质纤维素在内的生物质资源在温和条件下(<200 )的高选择性转化制甲烷,为生物质资源的利用开拓了新路径。

  甲烷作为天然气的主要成分,不仅是一种重要的燃料,也是一类重要的化工原料。将大量废弃的生物质资源转化为甲烷是一个非常有意义的过程。但是,由于生物质分子中存在大量坚固且种类繁多的C-C键和C-O键,在低温条件下实现生物质资源高选择性的转化至甲烷极具挑战。

  本工作中,合作团队发展了一种载体氧缺陷介导方法,将“生物质氧化到CO2”与“CO2催化加氢到CH4”两个过程耦合起来,成功实现了较温和条件下的生物质资源直接甲烷化过程。研究发现,生物质分子被Ru/TiO2催化剂的晶格氧氧化至CO2,并在催化剂上生成氧缺陷;随后,CO2加氢还原到CH4过程中,裂解出的氧原子会填充氧缺陷从而恢复催化剂。该催化过程在温度低至120 时仍可稳定催化甘油水溶液产生CH4。该工作为生物质资源的有效利用提供了新思路。

  相关成果以“Oxygen Vacancy Mediated Catalytic Methanation of Lignocellulose at Temperature below 200 ”为题,于近日发表在《焦耳》(Joule)上。该工作得到国家自然科学基金、科技部重点研发计划、中科院B类先导专项“能源化学转化的本质与调控”等项目的资助。

  文章链接:https://doi.org/10.1016/j.joule.2021.07.001

附件: