近日,中国科学院大连化学物理研究所能源催化转化全国重点实验室动力电池与系统研究部研究员陈忠伟、副研究员毛治宇团队,联合西安交通大学教授冯江涛,在电池健康管理研究方面取得进展。该团队开发了新型的深度学习模型,克服了传统方法对大量充电测试数据的依赖,为电池实时寿命预估提供了新思路,实现了锂电池寿命的端到端评估。该模型作为团队开发的第一代电池数字大脑PBSRD Digit核心模型的组成部分,为电池智能管理提供了解决方案。
锂电池寿命的准确预测对于电气设备的正常运行至关重要。然而,由于电池容量退化过程的非线性和运行条件的不确定性,电池寿命的准确预测面临着挑战。
该研究提出了基于少量充电周期数据的深度学习模型。这一模型通过带有双流框架的Vision Transformer结构和高效自注意力机制,捕捉并融合多时间尺度隐藏特征,实现对电池当前循环寿命和剩余使用寿命的准确预测。同时,该模型在使用15个充电周期数据的情况下,将剩余使用寿命和当前循环寿命的预测误差分别控制在5.40%和4.64%以内。此外,在面对训练数据集未出现的充电策略时,该模型仍能够保持较低的预测误差,证明了其zero-short泛化能力。
这一电池寿命预测模型是第一代电池数字大脑PBSRD Digit的组成部分。研究人员通过将上述模型整合到该系统中,进一步提高了系统的准确性。目前,该电池数字大脑系统作为大规模工商业储能和电动汽车的能量管理核心,可部署于云端服务器和客户端嵌入式设备。
这一模型平衡了预测准确率和计算成本,提高了电池数字大脑对于寿命预估的应用价值。未来,该团队将通过模型蒸馏、剪枝等方法进一步优化模型,从而提高系统的鲁棒性和资源利用率。
相关研究成果以Deep learning powered lifetime prediction for lithium-ion batteries based on small amounts of charging cycles为题,发表在《电气电子工程师学会交通电气化学报》(IEEE Transactions on Transportation Electrification)上。研究工作得到国家自然科学基金和中国科学院战略性先导科技专项(B类)等的支持。
文章链接:https://ieeexplore.ieee.org/document/10613834